Nella teoria dei grafi, il coefficiente di clustering (o transitività) è la misura del grado in cui i nodi di un grafo tendono ad essere connessi fra loro.
L'evidenza suggerisce che nella maggior parte delle reti del mondo reale, e in particolare nelle reti sociali, i nodi tendono a creare gruppi fortemente uniti e caratterizzati da una densità di collegamenti relativamente alta; il coefficiente di clustering delle reti reali tende quindi ad essere maggiore rispetto a quello dei grafi in cui i collegamenti sono generati casualmente.[1][2]
Può essere misurato in due modi diversi: globale e locale. Quello globale descrive in generale l'intensità del fenomeno di clustering nella rete, mentre quella locale riguarda il livello di radicamento dei singoli nodi.